76 research outputs found

    Demonstration of a Novel Technique to Measure Two-Photon Exchange Effects in Elastic e±p Scattering

    Get PDF
    Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles. Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for ⟨Q2⟩=0.206 GeV2 and 0.830⩽ε⩽0.943. Conclusions: We have demonstrated that the tertiary e± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e+ and e− beams

    Measurement of the Generalized Form Factors Near Threshold Via ˠ*p→nπ+ at High Q²

    Get PDF
    We report on the first measurement of the F2 structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲ 100  MeV/c and their angles to ≳ 100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The Fn2 data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 \u3c Q2 2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio Fn2 / Fp2 at 0.2 ≲ x ≲0.8 with little uncertainty due to nuclear effects

    Deep Exclusive π+ Electroproduction Off the Proton at CLAS

    Get PDF
    The exclusive electroproduction of π + above the resonance region was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory by scattering a 6GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS, together with the high luminosity, allowed us to measure the cross section for the γ * p → nπ + process in 140 (Q 2, x B , t) bins: 0.16 \u3c x B \u3c 0.58, 1.6 GeV2 \u3c Q 2 \u3c 4.5 GeV2 and 0.1 GeV2 \u3c −t \u3c 5.3 GeV2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to four theoretical models, based either on hadronic or on partonic degrees of freedom. The four models can describe the gross features of the data reasonably well, but differ strongly in their ingredients. In particular, the model based on Generalized Parton Distributions (GPDs) contain the interesting potential to experimentally access transversity GPDs

    Comparison of Forward and Backward \u3ci\u3epp\u3c/i\u3e Pair Knockout in \u3csup\u3e3\u3c/sup\u3eHe(e,e\u27pp)n

    Get PDF
    Measuring nucleon-nucleon short range correlations (SRCs) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wave function, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3He(e,e\u27pp)n reaction, looking at events with high-momentum protons (pp \u3e 0.35 GeV/c) and a low-momentum neutron (pn \u3c 0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC. ©2012 American Physical Societ

    Transverse Polarization of Σ+ (1189) in Photoproduction on a Hydrogen Target in CLAS

    Get PDF
    Experimental results on the Σ+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson Laboratory are presented. The Σ+(1189) was reconstructed in the exclusive reaction γ+p→K0S+Σ+(1189) via the Σ+→pπ0 decay mode. The K0S was reconstructed in the invariant mass of two oppositely charged pions with the π0 identified in the missing mass of the detected pπ+π− final state. Experimental data were collected in the photon energy range Eγ=1.0 –3.5 GeV (√s range 1.66–2.73 GeV). We observe a large negative polarization of up to 95% . As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances

    ϕ-Meson Photoproduction on Hydrogen in the Neutral Decay Mode

    Get PDF
    We report the first measurement of the photoproduction cross section of the ϕ meson in its neutral decay mode in the reaction γp→pϕ(KSKL) . The experiment was performed with a tagged photon beam of energy 1.6 ≤ Eγ ≤ 3.6 GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The pϕ final state is identified via reconstruction of KS in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction γp→pKSX to be KL. The presented results significantly enlarge the existing data on ϕ photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of ϕ photoproduction

    Electroexcitation of Nucleon Resonances from CLAS Data on Single Pion Electroproduction

    Get PDF
    We present results on the electroexcitation of the low mass resonances Δ(1232)P33 , N(1440)P11 , N(1520)D13 , and N(1535)S11 in a wide range of Q2. The results were obtained in the comprehensive analysis of data from the Continuous Electron Beam Accelerator Facility (CEBAF) large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility (JLab) on differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries for π electroproduction off the proton. The data were analyzed using two conceptually different approaches—fixed-t dispersion relations and a unitary isobar model—allowing us to draw conclusions on the model sensitivity of the obtained electrocoupling amplitudes. The amplitudes for the Δ(1232)P33 show the importance of a meson-cloud contribution to quantitatively explain the magnetic dipole strength, as well as the electric and scalar quadrupole transitions. They do not show any tendency of approaching the pQCD regime for Q2⩽6 GeV2 . For the Roper resonance, N(1440)P11, the data provide strong evidence that this state is a predominantly radial excitation of a three-quark (3q) ground state. Measured in pion electroproduction, the transverse helicity amplitude for the N(1535)S11 allowed us to obtain the branching ratios of this state to the πN and ηN channels via comparison with the results extracted from η electroproduction. The extensive CLAS data also enabled the extraction of the γ∗p → N(1520)D13 and N(1535)S11 longitudinal helicity amplitudes with good precision. For the N(1535)S11, these results became a challenge for quark models and may be indicative of large meson-cloud contributions or of representations of this state that differ from a 3q excitation. The transverse amplitudes for the N(1520)D13 clearly show the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 \u3e1 GeV2, confirming a long-standing prediction of the constituent quark model

    Evidence for the Onset of Color Transparency in ρ0 Electroproduction off Nuclei

    Get PDF
    We have measured the nuclear transparency of the incoherent diffractive A( e , e ′ ρ0 ) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0 ʼs on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects

    Photodisintegration of \u3csup\u3e4\u3c/sup\u3eHE into \u3ci\u3ep\u3c/i\u3e+\u3ci\u3et\u3c/i\u3e

    Get PDF
    The two-body photodisintegration of 4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4He target. This is the first measurement of the photodisintegration of 4He above 0.4 GeV. The differential cross sections for the γ 4He →pt reaction were measured as a function of photon-beam energy and proton-scattering angle and are compared with the latest model calculations by J.-M. Laget. At 0.6−1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5−0.8 GeV

    Precise Measurements of Beam Spin Asymmetries in Semi-inclusive π\u3csup\u3e0\u3c/sup\u3e Production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin phi(h) amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle φh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations. (C) 2011 Elsevier B.V
    corecore